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Aila Särkkä Challenges in spatial point pattern analysis



Background

In early spatial point process literature point patterns were

I small

I observed in 2D

I with simple interaction structures

I with no repetitions available

I realizations of stationary and isotropic point processes.

Nowadays, it is more and more common that point patters are

I large

I observed in 3D or in space and time

I with complicated interaction structures

I with repetitions

I realizations of point processes that are not
stationary/isotropic.
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Two examples of complicated point pattern data

Locations of entry and end
points of epidermal nerve fibers

I 3D, repetitions, unusual
cluster process, local
anisotropy

Locations of air bubbles in polar
ice

I 3D, repetitions, anisotropy,
non-stationarity, noise
present
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Aila Särkkä Challenges in spatial point pattern analysis



Epidermal nerve fibers

Epidermal nerve fibers (ENFs) are thin sensory nerve fibers in the
epidermis, which is the outermost living layer of the skin.

Entry (base) points: locations where the ENFs penetrate the
epidermis

End points: locations of the terminations of ENFs
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Diagnostic value of ENFs

ENF structure changes due to so-called small fiber neuropathies,
such as diabetic neuropathy.

Dr. Kennedy’s group at the University of Minnesota has noticed
that subjects with diabetic neuropathy have

I less ENFs per surface area

I smaller summed length of ENFs per volume

I more clustered nerve patterns

than healthy subjects.
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Data

I 32 healthy volunteers and of 20 subjects with diabetes.

I Six body parts.

I Two blisters, approximately of the size 330 microns by 432
microns (by 20-50 microns), taken from each body part.
(Here, only 2D data.)

I From three to six images were taken from the two blisters,
typically two images from each blister. (Here, blister effect
ignored.)

I Non-spatial covariates age, gender, and BMI are known for
each subject.
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Point process summary statistics

I Both entry point patterns and end point patterns from
subjects with diabetic neuropathy tend to be more clustered
than healthy patterns

I Waller et al. (2011): only entry points and data from thigh
I Myllymäki et al. (2013): data from calf and foot, covariates

included
I Andersson et al. (2016): data from foot, only diabetic subjects

with ”mild” neuropathy (ENF density within the normal range)
included, reactive territory introduced

I Point process models could reveal more detailed differences
between healthy and neuropathic patterns
→ construct models for entry and end points
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Models for end points: cluster process

I We assume stationarity.

I Locations of entry points given.
I End point locations are modeled as clusters ”around” the

entry points. For a given entry point the model for an end
point cluster contains

I the number of points in the cluster (a discrete valued random
variable)

I the distance between an end point and the entry point (a
positive random variable)

I the angle of an end point (a random variable taking values in
[0, 2π)).

I We have suggested two models, non-orphan cluster (NOC)
model (Olsbo et al., 2013) and uniform cluster center (UCC)
model (Andersson et al., 2016)
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Models for end points

NOC

I Number of points per cluster: Jonquiére distribution or
negative binomial distribution (for number - 1).

I Distance between an end point and its entry point: Gamma
distribution.

I Angle of an end point: von Mises distribution, with mean
angle θ0 and concentration parameter κ. The mean angle is
chosen so that end points favour directions towards open
space, i.e. avoid the direction of the nearest other entry.

UCC

I Number of end points and distance between end point and its
entry as in NOC

I von Mises for the angles: each end point cluster has a mean
angle that is uniformly distributed on [0, 2π). Points in end
point clusters have still clustered directions but no preferred
direction.
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Are NOC and UCC good models?

From left to right: ”mark” distribution, where the mark is the
number of entry points that are closer to an end point than the
end point’s own entry point is, Ripley’s L function for the end
points, and the cross L function for the entry and end points.
Top row: Mild diabetic neuropathy; Bottom row: Healthy.
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Model for entry points

Neyman-Scott cluster process for the entry points works quite well
according to our preliminary results.
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Final model: (3D) cluster process for end points where the parent
(entry) points are clustered. Model for the end points should be
improved by taking dependence on the other end and entry points
into account.
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Air bubbles in polar ice

I Polar ice has information on the climate
of the past.

I To be able to interprete ice core records,
one has to know how old the ice is.

I There are some theories connecting the
dynamics of glaciers to the age of ice.

I Question: How can we estimate the
deformation in polar ice?

I Method: Polar ice is compacted snow. If
we go deep enough, the air pores are
isolated in the ice.
→ Study the anisotropy (deformation) of
these air inclusions in the ice samples.
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Two ice data sets

Talos Dome, Antarctica (Talos)

I ice from depths 153m, 353m, and 505m

I 14 samples (1.0× 1.0× 1.0cm3, 350-750 bubbles) per depth

I volume preserving spherical compression, where the ice is
compressed in z direction and stretched isotropically in the xy
plane

Dronning Maud Land, East Antarctica (EDML)

I ice from depths 151m, 749m, and 915m

I 30 samples (3× 3× 1.7cm3, 2000-3000 bubbles) per depth

I volume preserving transformation

I compression accompanied by a lateral flow
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How to visualize anisotropy?

A point pattern (left) and its pairwise difference vectors for each
point pair, a Fry plot (right).
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Pairwise vectors of the data

The pairwise difference vectors not rotationally invariant
→ pattern not isotropic
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Set-up

I The underlying point process X0 is regular, stationary and
isotropic

I We assume that the observed point pattern is a realization of
a point process X , which we obtain by

X := TX0 = {Tx : x ∈ X},

where T : R3 → R3 is an invertible linear mapping, and since
X0 is isotropic, can be decomposed as

T = RC

where R is a rotation matrix and C is a diagonal scaling
matrix that compresses and stretches the dimensions.

I Note that X is stationary
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Estimating the transformation in two steps

I First, we estimate the rotation R by fitting ellipsoids to the
contours of directed cumulants of the difference vectors, i.e.
fitting ellipsoids to the Fry plot.

I Second, we estimate the scaling C by transforming the
back-rotated data as in Redenbach et al. (2009).
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Illustration of the ellipsoid fitting in 2D

54 directions
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Fry points, fitted contours and the average

Left: Ellipsoid fitted to the nearest Fry points
Middle: Ellipsoid fitted to the 5th nearest Fry points
Right: Mean ellipsoid
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Estimating scaling

I Back-rotate x̃ = R̂−1x so that we get approximately Cx0,
where x0 is the original isotropic pattern.

I We assume volume preservation, i.e. |T | = 1.

I We follow Redenbach et al. (2009): A grid of scaling
parameters {d1, ...,dm} is chosen. Then, the data are
back-transformed by C (di)

−1 (for each i) and the final
estimate for the scaling is given by the di that minimizes

Td =

r2∫
r1

(|K̂x ,d(r)− K̂z,d(r)|+ |K̂y ,d(r)− K̂z,d(r)|

+|K̂x ,d(r)− K̂y ,d(r)|) dr ,

where K̂x ,d(r) is an estimator for the conical K function (a
directional version of Ripley’s K function) in direction of the x
axis etc.
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Results for the ice data

Talos EDML
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Aila Särkkä Challenges in spatial point pattern analysis



What next?

I The new samples (EDML) contain extra relaxation (noise)
bubbles that do not give any information on the motion of the
ice but disturb the anisotropy analysis
→ We have developed an MCMC approach and a variational
Bayes approach to classify the bubbles into two classes, real
and noise bubbles
→ To do: Perform the anisotropy analysis and classification
simultaneously

I Data show some layering of the ice (intensity of the air pores
varies from layer to layer) due to seasonal changes
→ To do: Include inhomogeneity
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